镁合金是最轻的金属结构材料,密度(约1.8 g/mm3)仅为铝合金的2/3、钢的1/4,在轻量化方面具有广阔应用前景。但镁合金耐腐蚀性差,这极大限制了其在各领域的广泛应用。通过微弧氧化(Microarc Oxidation - MAO)技术在镁合金表面原位生成的氧化物陶瓷膜层,在提高其耐腐蚀性方面具有突出优势。但MAO膜层多孔结构特性影响其长效腐蚀防护性能。经过聚合物涂层封孔后处理形成复合涂层,能够显著提升镁合金MAO膜层的腐蚀防护性能。然而,涂层在实际应用中会发生机械损伤,而使其失去对金属基体的防护作用。为解决涂层机械损伤导致的腐蚀防护作用失效难题,构筑具有自修复功能的涂层是重要途径之一。
中国科学院兰州化学物理研究所梁军研究员团队基于负载缓蚀剂的MAO膜层和二硫键改性聚氨酯,在镁合金表面构筑了具有双重自修复功能的复合涂层。研究人员以MAO膜层中的微孔为容器负载缓蚀剂,在此基础上,喷涂二硫键改性的聚氨酯形成了复合涂层(MP-i)。研究表明,与未负载缓蚀剂的复合涂层(MP-0)以及负载缓蚀剂的改性聚氨酯单一涂层(P-i)相比,该复合涂层发生损伤后表现出优异的自修复能力及腐蚀防护效果,有望满足在外部损伤情况下长效腐蚀防护的应用需求。
图1 MP-i, MP-0和P-i样品划痕处及修复后的SECM图
复合涂层发生损伤后的自修复功能主要通过以下两个过程的共同作用实现。在热作用下,通过改性聚氨酯的动态二硫键交联反应和形状记忆效应使损伤实现修复。涂层损伤处多孔MAO膜层中缓蚀剂释放到镁合金基体表面形成屏障,遏制基体腐蚀的发生与发展,从而为改性聚氨酯的有效自修复赢得“时间差”。此外,即使复合涂层损伤后并发生腐蚀,作为中间层MAO膜也可起到隔离腐蚀产物与聚氨酯涂层的作用,从而有助于聚氨酯链段自由移动和涂层缝隙闭合,为二硫键动态交联反应提供了有利条件,因此提高了聚合物涂层的自修复能力。
图2 复合涂层双重自修复示意图
相关研究成果发表在Chemical Engineering Journal (2021, 424, 130551)上,硕士生刘思勤为第一作者,梁军研究员为通讯作者。
以上工作得到了国家自然科学基金和企业合作项目的支持。